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1. Introduction 

Consider a (p + 1) random vector 

which follows a multivariate normal distri u- 
tion where Y is a scalar and X is a p x l 
vector (p > 1). In estimating the population 
mean of Y, it is well known that the 

precision of the estimator can be increased if 
auxiliary information is available. In this 
paper, we shall consider the linear regression 
estimator of with X as the auxiliary 

variable. To use the regression estimator we 
need to know the population mean of X. 

When is unknown, we may take a preliminary 

sample to estimate it. This sampling procedure 
is the double sampling technique. In certain 
situations, an investigator may have partial 
information about and suspects that 

In order to utilize this partial 

information, the' investigator can perform a 
preliminary test about the hypothesis 
HO: Ex = versus H1: / As an 

example, consider estimating the average yield 
per acre of a certain crop. It is known that 
the yield is highly correlated with the mois- 
ture and nitrogen content of the soil. Hence, 
the moisture and nitrogen content can be used 
as the auxiliary variable, X. The experimenter 
usually does not know Ex; but from the amount 

of rainfall reported by the weather bureau or 
other sources and from analysis by the soil 
science department, he believes that 

should be . Once a preliminary sample is 

available, the investigator may test HO. He 

then will use in the regression estimator 

if H 
0 

is accepted; otherwise he uses the 

sample mean based on the preliminary sample. 
This estimator is usually known as the prelimi- 
nary test estimator. If the investigator's 
prior information or experience is reliable, 
then the true mean of X will be expected 

to be very close to In this situation, 

the efficiency of the preliminary test estimator 
is high. Thus in practice, it is desirable to 
use the preliminary test estimator when partial 
information is available to the investigator. 

Preliminary test estimator was first 
studied by Bancroft (1944). It belongs to the 
area of inference based on conditional specifi- 
cation. A bibliography on inference based on 
conditional specification was recently compiled 
by Bancroft and Han (1977). 
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Let 
X 

N(j, E); = and 

2 

E = 112 . We assume X. is cheaply ob- 
-21 -22 

served while Y is more expensive to observe. 
Let 

(Yi, Xli, 
X2i, ..., Xpi)' i = 1, ..., n2 

be a random sample from N(j, E). This is sup- 
plemented by n1 - n2 (n1 > n27 more independent 

observations on X = (X1, ..., Xp)'. In 

practice, the sample of n2 observations is 

usually a subsample from the sample of n1 

observations. From all the observations, we 
define 

nl n1 

X1= (1 /n1)( E ... , E X. )' , and from 
i =1 i =1 

n2 

the subsample, we define = 1 /n2 y, 

1=1 
n2 n2 

and X2 = E Xpi)'. If the 

i =1 i =1 
vector and E are known, then given X an un- 

biased estimator of is 
X 

+ 1 ( ) with variance = 
l2 -22 

(1 
-22 -21 (1 /n2) k2 X21 

is considerably large, we have an appreciable 
gain in precision. 

If is unknown and partial information 

about is available, without loss of 

generality we let = 0, the linear regres- 

sion preliminary test estimator is defined as 

- -12 X2 

if (RI 
1 -22 

(1.i) 

1 

+ E22 
- 

if 
> 

where the 100(1 -a) percent point of 

the Chi - squared distribution with p degrees of 
freedom and a is the level of significance of 
the preliminary test. Han (1973) studied the 

estimator when p = 1. This paper will 

consider the general case when p > 1. The bias, 



mean squared error (MSE) and relative efficiency 

of are derived in Esimai (1977) and are 

given in Section 2. The optimal sample design 
is discussed in Section 3. 

When E is unknown, the linear regression 
preliminary test estimator is 

-12 22 x2 

if T 

+ -12 

-1 
if S22 

> 0 

Without loss of generality, we let E22 = I 

and 10 = 1. Since B1 changes sign with E12 

and we need only study the bias for 

> 0 and p > 0 for p = 1. The bias was 
also studied by Han (1973) where the bias was 
expressed in terms of the cumulative distribu- 
tion function of the standard normal distribu- 
tion. The two expressions are equivalent as 
they should be. The general behavior of -B1 

is as follows. The bias is zero when = 0 

which is when the null hypothesis is true. It 
is an increasing function of p, but a de- 

(1.2) creasing function of a. For fixed ni, a 

and p, the bias increases from zero and then 
decreases to zero as increases from zero 

to one. The values of -B1 for n1 = 30, p = 2 

and certain values of E12, and a are given 

in Table 1. The properties of the bias are 
found to be identical with those recorded for 
p = 1. 

where ml = nl - 1, T0 is the 100(1 -a)th 

percentile of the Hotelling's T2 distribution 
with m 

1 
degrees of freedom. We 

S12 

where S11 

n 
Si2 

2 

define 

= E (Yi Y), 
i=1 

n2 

E (yi - - X2)', 
i =1 
n1 

S22 = E (xi - - Xi)' and 
i =1 

%2 are as defined above. 

2. Bias, MSE and Relative Efficiency of 

and 

The joint distribution of ( 

is normal. Denote the acceptance region for 
the preliminary test by A and its complement 

by and let 
p,a 

b. 

E(µ) = - E22 

+ + 112 122 
12)]IA1 P(A) 

(2.1) 

= 22 E12 E22 
P(A) 

= + B1 

B1 

be 

is evaluated in Esiv.ai (1977) and found to 

B1 = -112 122 EX Hp+2 (b; 
6) 

where Hp +2 (b; b) is the cumulative distribu- 

tion function of the noncentral chi -squared dis- 
tribution with p+2 degrees of freedom and 

noncentrality parameter = n 

(2.2) 
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Table 1. Values of -B1 for p = 2, ni = 30 

-12 ) 

(0, o) 

(.5, 0) 

( -5, .5) 
(1, o) 

(o, o) 

(.5, 0) 

(.5, .5) 
(1, 0) 

a = .05 

0 
.07 .07 
.06 .12 

O 

a= .10 
o o 
.04 .04 

.04 .07 
o o 

-.05 

.02 

_.03 
.01 
0 

The MSE of was found to be = MSE(kr) 

= g1 + h1 where 

-1 
g1 = (1 /n2)a + 

(1n1)1._ E21 

-1 
-(1/n2)112 

E21' 

hl E22 E22 

-(1/n, 
1)E12 1 (b; 

8) 

-2 112 122 122 [1 Hp+2 
(1); 

(2.3) 

8)] 

+ 
22 112 122 [1 Hp+4 (b; 

Now we compare the performance of the preliminary 

test estimator, with the usual linear 

regression estimator, + 
- 



when the information of is ignored. The 

relative efficiency of to the linear re- 

gression estimator is defined as 

MSE (y + El2 E22 - g1 
el 

MSE 

Table 2. Values of e1 for p = 2, n 
1 

= 30, 

n2 = 10 

a = .05 

(.7, 0) 1.24 .69 .70 1.0 

(.5, .5) 1.25 .83 .52 1.0 

(.7, 7) 4.07 .56 .22 1.0 

( -.5, .7) 1.64 .8o 1.04 1.0 

a .10 

(.7, 0) 1.19 .78 .79 1.0 

(.5, .5) 1.20 .88 .64 1.o 

(.7, .7) 2.71 .67 .32 1.0 

( -5, .7) 1.48 .87 1.02 1.0 

a = .25 

(.7, 0) 1.11 .91 .92 1.0 

(.5, .5) 1.11 .95 .83 1.0 

(.7, .7) 1.61 .85 .57 1.0 

(-.5, .7) 1.24 .95 1.01 1.0 

Without loss of generality we let E22 = I and 

02 1. The values of e1 for p = 1 are 

given in Han (1973) and will not be given here. 

The values Of e1 for p = 2, n1 = 30, 

n2 = 10 and certain values of E12, a and 

Ex are given in Table 2. It is seen that el 

assumes maximum value at = O. The maximum 

value of e1 is an increasing function of p 

for fixed a, and n2. The value of e1 

decreases to a minimum and then increases to 
unity as increases from (0, 0). 

The estimator in (1.2) is given 

when is unknown. The bias, B2, and the 

mean square error, M2, are derived in 

Esimai (1977) and are omitted here. The behav- 

ior of B2 is the same as that of B1 and the 

behavior of M2 is similar to that of Ml. 

3. The Optimal Sample Design 

We shall now consider the problem of find- 
ing the optimum allocation of the sample sizes 
nl and n2 for the estimator the cost 

function is 
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C 
= n1c1 

+ n2c2 (3.1) 

where c1 is the cost of observing the vector 

X and c2 is the cost of observing Y. The 

optimum values of n1 and n2 are obtained 

by minimizing subject to the constraint 

(3.1). We recall that in practice, under the 
supposition of a conditional specification, 
the experimenter has only partial information 
based on which he believes that is close 

to The relative efficiency of is the 

largest at = 0 and so it would be reason- 

able to consider the problem of optimum alloca- 
tion under the optimum situation by letting 
Ex = 0 in Ml. When = 0, Ml becomes 

Ml = + k2/n2 (3.2) 

where 

= 
k1 12 22 21 [1 - Hp+2 (b; 0)] 

k2 
02 

12 -1 -22 -21 

Minimizing (3.2) subject to (3.1) we find 

n1 - 

k2c1c2 + 

no 

+ 

and the optimum value of M1 is 

+ 

M1, opt C 

(3.3) 

(3.4) 

We now compare M1 
o t 

with the optimum 

value of the MEE of y + E22 (X1 - 
the regression estimator under double sampling 
without using the preliminary test. If we de- 

note the MEE of + E12 
E22 

by - by M 

M = k1 + k /n2 (3.5) 

where 
= -12 -22 -21' k2 = 02 X12 -22 -21 

and the optimum value of M is 

M - ( 

)2 

+ 

2c2 

(3.6) opt C 

To compare (3.4) and (3.6) we note from (3.2) 
that (1 - p2 (b;0)) is a decreasing function 

of b with a maximum equal to unity at b = O. 

Hence the numerator of M1, 
opt 

at most as 

large as that of Mopt and M1, 
opt Mopt 

with equality holding for b = 0, i.e. when the 
two estimators coincide. 
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